Reconstruyendo las competencias de los supervisores de posgrado desde la perspectiva de la inteligencia artificial

Autores/as

DOI:

https://doi.org/10.5281/zenodo.16948695

Palabras clave:

inteligencia artificial, supervisor de posgrado, alfabetización en IA, desafíos e innovaciones

Resumen

En la era de la inteligencia artificial (IA), el modelo de formación de posgrado está experimentando una transformación significativa, lo que impone nuevas exigencias a las competencias y cualidades de los supervisores de posgrado. Este artículo explora en profundidad la evolución y las vías de mejora de las competencias profesionales de los supervisores de posgrado en el contexto de la IA. Analiza el impacto de la IA generativa en los roles de docentes y estudiantes, así como en la docencia y la investigación en la formación de posgrado. Además, examina la estructura de edad de los supervisores de posgrado y los requisitos de las políticas pertinentes en la era de la IA. Profundiza en las nuevas expectativas de los supervisores en áreas como la alfabetización informacional, la adaptabilidad tecnológica, la competencia colaborativa entre humanos e IA, la capacidad de innovación y la conciencia ética. Finalmente, propone estrategias para mejorar las competencias de los supervisores, incluyendo el fomento de una comprensión adecuada de la tecnología digital, la mejora de los sistemas de formación, el establecimiento de nuevos marcos de evaluación y el fortalecimiento de la colaboración universidad-industria. Estas medidas buscan ayudar a los supervisores de posgrado a satisfacer mejor las necesidades educativas de la era de la IA y promover la integración profunda de la tecnología de IA en la formación de posgrado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Wang Z, Xia Q. The decomposition and reconstruction of the roles of postgraduates and supervisors by generative AI. Journal of Graduate Education. 2023;(05):48-54.

Li Y, Zhu Y, Sun D, Xu J, Zhai X. Analysis of variability in the use of generative artificial intelligence in typical research scenarios: the influence of disciplinary background and AI literacy. Modern Distance Education Research. 2025;37(2):92-101,112.

Luo MN, Yin L, Zhao CG. International research on current status, hotspots and trends of teacher AI literacy: a bibliometric analysis based on the web of science database. Educational Science Research. 2024;(09):73–81.

Kandlhofer M, Steinbauer G, Hirschmugl-Gaisch S, et al. Artificial intelligence and computer science in education: from kindergarten to university[C]//2016 IEEE Frontiers in Education Conference (FIE). IEEE, 2016: 1–9. [Accessed 21 June 2025]. Available in: https://tugraz.elsevierpure.com/en/publications/artificial-intelligence-and-computer-science-in-education-from-ki

Long D, Magerko B. What is AI literacy? competencies and design considerations[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1–16. [Accessed 20 June 2025]. Available in: https://doi.org/10.1145/3313831.3376727

Arantes JA. Personalization in australian K-12 classrooms: how might digital teaching and learning tools produce intangible consequences for teachers’ workplace conditions? The Australian Educational Researcher. 2023;50(3):863–880. [Accessed 16 June 2025]. Available in: https://doi.org/10.1007/s13384-022-00530-7

Yang Y, Zou YJ. Coming of a big data age? introducing a latest dimension reduction technique for public management: data visualization. Chinese Public Administration. 2021;(01):105–113.

Xie HQ. Improvement of information literacy of rural middle school English teachers. Teaching & Administration. 2017;(33):65–67.

Tao JH, Dong W. Evolutionary game of knowledge sharing in online Q&A learning community from the perspective of knowledge coupling—simulation experiment of knowledge sharing behavior based on system dynamics. Modern Educational Technology. 2025;35(05):91–100. [Accessed 23 June 2025]. Available in: https://doi.org/10.3969/j.issn.1009-8097.2025.05.010

Zhao LL, Bao WY, Dai RH. “Integration” or “alienation”: the orientation of teachers’ technological adaptation in the intelligent age from the phenomenological perspective. China Educational Technology. 2024;(02):39–46.

Kohnke L, Zou D, Ou AW, et al. Preparing future educators for AI-enhanced classrooms: insights into AI literacy and integration. Computers and Education: Artificial Intelligence. 2025;8:100398. [Accessed 23 June 2025]. Available in: https://doi.org/10.1016/j.caeai.2025.100398

Wang ZC, Luan PZ. The internal logic, practical challenges, and possible paths of teacher supply in the digital era. Chinese Journal of Distance Education. 2025;45(05):126–140. [Accessed 17 June 2025]. Available in: https://doi.org/10.18323/3034-2996-2025-2-61-3

Pei R. Generative artificial intelligence empowering education and teaching: transformational impact, risk challenges, and practical paths. Forum on Contemporary Education. 2025;(02):72–79.

Lv HX. Emotional rationale and improvement path of teacher identity in human-machine cooperative teaching: an interpretation of the sociology of emotions. e-Education Research. 2023; 44(12): 108-115.

Yang ZM, Jin YL. “The harmonious concerto”: exploring the relationship between teachers and intelligent machines in human-machine collaborative teaching. Chinese Journal of Distance Education. 2025; 45(4): 99-113.

Chiu TKF, Moorhouse BL, Chai CS, et al. Teacher support and student motivation to learn with artificial intelligence (AI) based chatbot. Interactive Learning Environments. 2024; 32(7): 3240-3256. [Accessed 27 June 2025]. Available in: https://doi.org/10.1080/10494820.2023.2172044

Wang J, Chen T, Yang Y. The integration and co-creation of cognition and regulation: exploring processes and patterns in human-AI interactions facilitated by generative artificial intelligence. China Educational Technology. 2024;(08):45-55.

Qin D, Zhang L. Reconstruction of teacher’s role in man-machine cooperative teaching. e-Education Research. 2020;41(11):13-19.

Liu F, Dong Y. Why is critical thinking increasingly important in the age of generative AI? Technology Enhanced Foreign Language Education. 2025;(01):3-10,113.

Tian XP, Xiao ZQ. Academic ethics and risk management of graduate research writing empowered by generative AI. Modern Educational Technology. 2024; 34(08): 23-32. [Accessed 13 June 2025]. Available in: https://doi.org/10.3969/j.issn.1009-8097.2024.08.003

Zhang WN. AI threatens academic career?—from the perspective of knowledge innovation. Jinan Journal (Philosophy & Social Sciences). 2023; 45(04): 25-36.

Jia J, Wang T, Zhang Y, et al. The comparison of general tips for mathematical problem solving generated by generative AI with those generated by human teachers. Asia Pacific Journal of Education. 2024; 44(1): 8-28. [Accessed 18 June 2025]. Available in: https://eric.ed.gov/?id=EJ1413716

Chen XS, Qi WX. The machine-based knowledge-producing mode and the new metaphor of education. Educational Research. 2023; 44(10): 33-43.

Du J, Feng KR, Wang D. Academic morality anomie in universities and its governance strategies in the context of generative artificial intelligence [J/OL]. Journal of Soochow University (Educational Science Edition). 2025: 1-10 [2025-05-17].

Zhu AJ, Cao RJ. On the characteristics of teachers’ core literacy in the era of artificial intelligence. Journal of Huaiyin Teachers College (Natural Science Edition). 2023; 22(4): 341-345.

Xiao QS. Teachers’ key competences and its cultivation in the era of artificial intelligence. Journal of Tianjin Academy of Educational Sciences. 2020; (01): 21-27.

Qi CH. Research on the risks of disinformation from generative artificial intelligence and its governance paths. Information Studies: Theory & Application. 2024; 47(03): 112-120.

Spitale G, Biller-Andorno N, Germani F. AI model GPT-3 (dis) informs us better than humans. Science Advances. 2023; 9(26): eadh1850. [Accessed 25 June 2025]. Available in: https://doi.org/10.1126/sciadv.adh1850

Li JH, Zhuang RX, Nian ZY, et al. Cultivation of creative competency oriented to man-machine collaboration—also on the requirement of creative talents in the intelligent era. China Educational Technology. 2021; (7): 36-42, 61.

Guo J, Hao JJ. Teacher’s role orientation and accomplishment demand in the age of intelligence. China Educational Technology. 2021; (06): 121-127.

Van Noorden R, Perkel JM. AI and science: what 1,600 researchers think. Nature. 2023; 621(7980): 672-675. [Accessed 28 June 2025]. Available in: https://doi.org/10.1038/d41586-023-02980-0

Wang HJ, Ru XH. AI algorithm bias and its governance. Studies in Philosophy of Science and Technology. 2020; 37(2): 101-106.

Ng DTK, Leung JKL, Chu KWS, et al. AI literacy: definition, teaching, evaluation and ethical issues. Proceedings of the Association for Information Science and Technology. 2021; 58(1): 504-509. [Accessed 29 June 2025]. Available in: https://doi.org/10.1002/pra2.487

Ban LN. Influencing factors and promotion strategies of university teachers’ information literacy. Library Work and Study. 2024;(07): 30-38.

Descargas

Publicado

18-08-2025

Cómo citar

Wang , X. (2025). Reconstruyendo las competencias de los supervisores de posgrado desde la perspectiva de la inteligencia artificial . Revista Cubana De Administración Pública Y Empresarial, 9, e366. https://doi.org/10.5281/zenodo.16948695