Construcción y aplicación de un modelo inteligente impulsado por datos de múltiples fuentes para el análisis de la demanda industria-investigación en educación inteligente

Autores/as

  • Chen Chen School of Automation, Beijing Institute of Technology, Beijing, China; School of AI, Beijing Institute of Technology, Beijing, China https://orcid.org/0000-0001-9354-6974
  • Nan Li School of Automation, Beijing Institute of Technology, Beijing, China
  • Zhao Zhang School of Automation, Beijing Institute of Technology, Beijing, China
  • Fang Deng School of Automation, Beijing Institute of Technology, Beijing, China; School of AI, Beijing Institute of Technology, Beijing, China
  • Maobin Lv School of Automation, Beijing Institute of Technology, Beijing, China
  • Lili Fan School of Automation, Beijing Institute of Technology, Beijing, China; School of AI, Beijing Institute of Technology, Beijing, China
  • Wei Dong School of Automation, Beijing Institute of Technology, Beijing, China; School of AI, Beijing Institute of Technology, Beijing, China

DOI:

https://doi.org/10.5281/zenodo.16953649%20

Palabras clave:

educación inteligente, fusión de datos multi-fuente, modelo de análisis de demanda de investigación e industria, cultivo de talento, sistema de apoyo a la toma de decisiones educativas, educación con IA

Resumen

En el contexto del creciente desarrollo de la educación inteligente, resolver el desajuste estructural entre la formación de talento y las demandas de la industria se ha convertido en uno de los principales desafíos de la reforma de la educación superior. Este estudio propone un marco progresivo de tres fases, denominado "Adquisición de Datos-Modelado de Demanda-Resultados de Decisiones", para construir el modelo de análisis inteligente basado en datos de múltiples fuentes para la demanda de la industria y la investigación. Este modelo integra datos tripartitos de los ámbitos industrial, académico y de políticas para impulsar el cambio de paradigma en la toma de decisiones educativas, pasando de enfoques basados en la experiencia a enfoques basados en datos: 1) la extracción de perfiles de demanda de la industria mediante el modelado temático de textos de reclutamiento no estructurados para revelar marcos de competencias compuestos; 2) la identificación y el seguimiento de los focos y tendencias de la investigación académica mediante análisis bibliométricos y de coocurrencia de palabras clave; 3) la calibración dinámica de las ponderaciones del modelo mediante el análisis de documentos de políticas con base en orientaciones estratégicas. Aplicado a la disciplina de la inteligencia artificial como campo empírico, el modelo revela tres características específicas del dominio: 1) las demandas de la industria demuestran una integración tripartita de competencia técnica, aplicabilidad industrial y conciencia ética; 2) la investigación académica evoluciona desde los avances tecnológicos hasta la construcción de ciclos cerrados basada en escenarios, y posteriormente a la reconstrucción de valores socio éticos; 3) las prioridades políticas enfatizan la soberanía tecnológica y el desarrollo de escenarios verticales. Posteriormente, el modelo genera matrices de competencias jerárquicas e inventarios de conocimiento con prioridad dinámica para fundamentar la optimización curricular, acompañados de cuatro estrategias de desarrollo de talento basadas en la evidencia: 1) establecer un ecosistema educativo tripartito e integrado; 2) fortalecer los mecanismos de colaboración entre la industria, la academia y la investigación; 3) crear marcos adaptativos de renovación del conocimiento y gobernanza ética; 4) mejorar las capacidades de innovación interdisciplinarias basadas en escenarios. Este estudio amplía aún más los escenarios de aplicación del modelo, demostrando su considerable potencial para potenciar los ecosistemas educativos inteligentes y describe futuras líneas de investigación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Liu DJ. A review of research on the transformation of talent cultivation in universities empowered by artificial intelligence. E-education Research. 2019; (11): 106–113.

Li GP, Chen WY. Effective approaches to the transformation of talent cultivation in Chinese universities under the background of artificial intelligence. China Higher Education. 2020; (11): 54–56.

Huang JW, Zhang MY. The digital transformation of discipline governance in universities: Mechanisms, challenges, and practical paths. China Educational Informatization. 2024; 30(5): 16–25.

Chen HL, Tao WZ. The innovative contribution of Xi Jinping’s important discourse on developing new quality productive forces. Journal of Beijing Institute of Technology (Social Sciences Edition). 2024; 26(4): 1–8. [Accessed 15 April 2025] Available from: https://dx.doi.org/10.15918/j.jbitss1009-3370.2024.0674

Zhu Y, Li Y, Yang Y, et al. Intelligent technology-driven transformation of higher education: Highlights and reflections on the 2023 Horizon Report: Teaching and Learning Edition. Open Education Research. 2023; 29(3): 19–30.

Xing Z, Li Z. Interpretation of Xi Jinping’s important discourse on the “nine adherences” of educational reform and development. Journal of Beijing Institute of Technology (Social Sciences Edition). 2023; 25(03): 172–178.

Yang Y, Zhang S. Research on strategies for educational digital transformation from a global perspective. E-education Research. 2024; 45(6): 41–49.

State Council. Notice of the State Council on issuing the New Generation Artificial Intelligence Development Plan. gov.cn. 2017-07-08. [Accessed 16 April 2025] Available from: http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.

Liu C. State Council issues the Development Plan for a New Generation of Artificial Intelligence: Building China’s first-mover advantage in AI development. China Science and Technology Industry. 2017; (8): 78–79.

The CPC Central Committee & the State Council. Education Modernization 2035 and the Construction Plan for Building China into an Educational Powerhouse. gov.cn. 2020-10-13. [Accessed 16 April 2025] Available from: https://www.gov.cn/gongbao/2025/issue_11846/202502/content_7002799.html

Liu S, Liu S, Sun J, et al. Key issues in the development of intelligent education. China Distance Education (Comprehensive Edition). 2021; (4): 1–7.

Zheng Y, Liu S, Wang Y. The practical foundation, realistic dilemma and reform direction of education digitalization in China. China Distance Education. 2024; 44(6): 3–12.

Tang X, Li X, Ding Y, et al. The pace of artificial intelligence innovations: Speed, talent, and trial-and-error. Journal of Informetrics. 2020; 14(4): 101094.

Li Y, Yang P. Higher education worries and response in the era of artificial intelligence. SCIREA Journal of Education. 2023; 8(1): 24–44. [Accessed 17 April 2025] Available from: https://doi.org/10.54647/education880398

Xiao Y. Insights from typical cases of industry-university-research cooperation in developed countries: A case study of Germany’s dual system. Science & Technology in Higher Education. 2016; (10): 43–45.

Duan L. Driving mechanisms of industry-university-research collaborative education in applied universities abroad: Based on Burton Clark’s “Triple Helix Model”. Higher Education Development and Evaluation. 2016; 32(3): 82–90.

Geng L. Collaborative talent cultivation models of industry-university-research in developed countries and their implications: A comparative analysis of Germany, Japan, and Sweden. Science & Technology in Higher Education. 2020; (9): 35–39.

Liang X, Du J. A review of research on talent cultivation under industry-university-research collaborative innovation. Cooperative Economy and Science & Technology. 2024; (14): 82–84.

Zhong W, Hou H. Optimizing educational decision-making mechanisms from the perspective of big data: Realization paths. Educational Development Research. 2016; 36(03): 8–

Yang S, Yu K. The dilemma and breakthrough of evidence-based decision-making in China’s education policy. Journal of National Academy of Education Administration. 2019; (10): 51–58.

Feng Y. A review of data-driven research on teachers’ instructional decision-making. China Distance Education. 2020; 41(4): 65–75. [Accessed 20 April 2025] Available from: https://doi.org/10.13541/j.cnki.chinade.2020.04.009

Ronzhina N, Kondyurina I, Voronina A, et al. Digitalization of modern education: problems and solutions. International Journal of Emerging Technologies in Learning (iJET). 2021; 16(4):122-135. [Accessed 20 April 2025] Available from: https://doi.org/10.3991/ijet.v16i04.18203

Guan X, Sun S, Hou X, et al. A study on the construction of a dynamic adjustment model for vocational education talent training programs driven by AI technology. China Vocational and Technical Education. 2023; (14): 72–79.

Zhang X, Li W, Zhang S, et al. The development of data-enabled instructional decision-making: From educational data applications to multimodal learning analytics. E-education Research. 2023; 44(03): 63–70.

Peng Z, Wang Y. Breaking the value bottleneck: Construction and application of a general semantic model for multi-source heterogeneous educational data. China Educational Technology. 2025; (04): 40–47.

Yang D. On the paradigm shift of education in China. Journal of Beijing Institute of Technology (Social Sciences Edition). 2012; 14(4): 1–9.

Liu S, Yang Z, Li Q. Computational education: Connotations and approaches. Educational Research. 2020; 41(3): 152–159.

Zhao Z, Duan X. The transformation of talent cultivation models in higher education in the AI era: Rationale, dilemmas and pathways. Journal of Southwest Minzu University (Humanities and Social Sciences Edition). 2019; 40(2): 213–219.

Sang B. Big data-driven educational decision-making to support building a strong education nation. People’s Education. 2024; (02): 6–11.

Röder M, Both A, Hinneburg A. Exploring the space of topic coherence measures. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. 2015; 399–408. [Accessed 21 April 2025] Available from: http://dx.doi.org/10.1145/2684822.2685324

Shen Y, Huang L, Wu X. Visualization analysis on the research topic and hotspot of online learning by using CiteSpace—Based on the Web of Science core collection (2004–2022). Frontiers in Psychology. 2022; 13: 1059858. [Accessed 22 April 2025] Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9810495/

Standing Committee of the National People’s Congress. Data Security Law of the People’s Republic of China. 2021-06-10. [Accessed 25 April 2025] Available from: http://www.npc.gov.cn/c2/c30834/202106/t20210610_311888.html.

State Council. Notice on issuing the 14th Five-Year Plan for Digital Economy Development. China Government Website. 2021-12-12. [Accessed 21 April 2025] Available from: https://www.gov.cn/gongbao/content/2022/content_5671108.html.

China Academy of Information and Communications Technology. China Artificial Intelligence Development Report. Beijing: CAICT, 2024.

National AI Standardization Group, Artificial Intelligence Subcommittee of the National Technical Committee. Standardization Guide for Ethical Governance of Artificial Intelligence. Beijing, 2023.

Beijing Municipal People’s Government. Several measures to promote the innovative development of general artificial intelligence in Beijing. Beijing Government Website. 2023-05-30. [Accessed 28 April 2025] Available from: https://www.beijing.gov.cn/zhengce/zhengcefagui/202305/t20230530_3116869.html.

Shanghai Communications Administration. Notice on issuing the Action Plan for “Computing Power Pujiang” New Data Centers (2022–2024). Shanghai Communications Administration Website. 2022-06-14. [Accessed 29 April 2025] Available from: https://shca.miit.gov.cn/zwgk/zcwj/wjfb/art/2022/art_d6e09d11d54a44fdac6887bede08d3cf.html

Descargas

Publicado

26-08-2025

Cómo citar

Chen, C., Li, N. ., Zhang, Z., Deng, F., Lv, M., Fan, L., & Dong, W. (2025). Construcción y aplicación de un modelo inteligente impulsado por datos de múltiples fuentes para el análisis de la demanda industria-investigación en educación inteligente. Revista Cubana De Administración Pública Y Empresarial, 9, e368. https://doi.org/10.5281/zenodo.16953649