Data ecosystems reference architecture based on data mesh & data fabric

Authors

DOI:

https://doi.org/10.5281/zenodo.7294747

Keywords:

data architecture, ecosystem, Data Mesh, Data Fabric, knowledge graphs

Abstract

Digital transformation requires rapid and profound changes to take advantage of technologies and data in order to make decision-making more effective with agility and self-sustainability. The complexity of data in the modern era and the silos that are generated at big scale drive the emergence of new data management models and architectures that focus on the intrinsic characteristics of digital ecosystems, characterized by the strong interrelationships of various actors through along the value chain, the platforms as the basis for interoperating with each other and the co-evolution of data products that emanate from increasingly heterogeneous sources. This article proposes the design of a reference architecture for data ecosystems based on the data architectures that are best supporting data management in this complex scenario: Data Mesh and Data Fabric, and with the use of knowledge graphs for the integration. As a method, an analysis of the most recent literature on data management and architectures is used to extract the principles and architectural components that are used in the design of such a reference architecture. An abstract representation of the reference architecture of data ecosystems is obtained, whose operational model is theoretically verified. It is the starting point for future research that will be directed towards its implementation in real use cases and organizational modeling related to the roles of the actors involved in the ecosystem reflected in the architecture itself.

Downloads

Download data is not yet available.

References

Dehghani Z. Data Mesh: Delivering Data-Driven Value at Scale (1.ed - preview version), O’Reilly Media, Inc. 2022. [Consultado 5 septiembre de 2022]. Disponible en: https://www.oreilly.com/library/view/data-mesh/9781492092384/.

Fortney J, McDonnell M, Johnson D, Chalk S. Data Fabric and Data as a” First Class Citizen”; 2022. [Consultado 1 spetiembre de 2022]. Disponible en: http://dx.doi.org/10.13140/RG.2.2.14510.18240

IBM, “Data fabric,” 2021. [Online]. Available: https://www.ibm.com/analytics/data-fabric

Östberg PO, Vyhmeister E, Castañé GG, Meyers B, Van Noten J. Domain Models and Data Modeling as Drivers for Data Management: The ASSISTANT Data Fabric Approach. IFAC-PapersOnLine. 2022 Jan 1;55(10):19-24. [Consultado 4 septiembre de 2022]. Disponible en: https://doi.org/10.1016/j.ifacol.2022.09.362

Delgado T. Una arquitectura de Ecosistemas de Datos Espaciales. XVI Convención y Feria INFORMATICA 2016: Conectando sociedades 2016; 1-6. ISBN 978-959-289-122-7.

de Oliveira EF, Silveira MS. Open government data in Brazil a systematic review of its uses and issues. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age 2018 May 30:1-9. https://doi.org/10.1145/3209281.3209335).

Gartner. Understand the role of Data Fabric. Guides for Effective Business Decision Making; 2022. [Consultado 21 agosto de 2022]. Disponible en: https://www.gartner.com/en/publications/essential-guide-to-data-fabric.

Liu CM, Badigineni M, Lu SW. Adaptive Blocksize for IoT Payload Data on Fabric Blockchain. In2021 30th Wireless and Optical Communications Conference (WOCC) IEEE. 2021 Oct; 7: 92-96). [Consultado 2 agosto de 2022]. Disponible en: http://doi.org/10.1109/WOCC53213.2021.9602935.

Farias VG, Santos R, Wiese I, Serebrenik A, Constantinou E. Investigating Power Relations in Open Source Software Ecosystems. InAnais Estendidos do XII Congresso Brasileiro de Software: Teoria e Prática 2021 Sep 27 (pp. 53-59). SBC. [Consultado 23 julio de 2022]. Disponible en: https://doi.org/10.5753/cbsoft_estendido.2021.17282

Shah SI, Peristeras V, Magnisalis I. Government big data ecosystem: definitions, types of data, actors, and roles and the impact in public administrations. ACM Journal of Data and Information Quality. 2021 May 6;13(2):1-25. [Consultado 13 agosto de 2022]. Disponible en: https://doi.org/10.1145/3425709

Hernandez-Almazan JA, Chalmeta R, Roque-Hernández RV, Machucho-Cadena R. A Framework to Build a Big Data Ecosystem Oriented to the Collaborative Networked Organization. Applied Sciences. 2022 12;12(22):11494. [Consultado 5 noviembre de 2022]. Disponible en: https://doi.org/10.3390/ app122211494.

Herrera F, Sosa R, Delgado T. GeoBI and big VGI for crime analysis and report. In2015 3rd International Conference on Future Internet of Things and Cloud 2015 Aug 24 (pp. 481-488). IEEE. [Consultado 12 julio de 2022]. Disponible en: https://doi.org/10.1109/FiCloud.2015.112

Orenga-Roglá S, Chalmeta R. Framework for implementing a big data ecosystem in organizations. Communications of the ACM. 2018 Dec 19;62(1):58-65. [Consultado 21 julio de 2022]. Disponible en: https://doi.org/10.1145/3210752

Singh KN, Behera RK, Mantri JK. Big data ecosystem: review on architectural evolution. Emerging Technologies in Data Mining and Information Security. 2019:335-45. [Consultado 1 agosto de 2022]. Disponible en: https://doi.org/10.1007/978-981-13-1498-8_30

Fernández TD. Taxonomía de transformación digital. Revista Cubana de transformación digital. 2020;1(1):4-23. [Consultado 15 agosto de 2022]. Disponible en: https://rctd.uic.cu/rctd/article/view/62.

Delgado T, Stuart ML, Delgado M. Grafos de conocimiento para gestionar información epidemiológica sobre COVID-19. Revista Cubana de Información en Ciencias de la Salud. 2021 Dec;32(4). [Consultado 12 agosto de 2022]. Disponible en: http://rcics.sld.cu/index.php/acimed/article/view/1686.

Hogan A, Blomqvist E, Cochez M, d'Amato C, de Melo G, Gutierrez C, Gayo JE, Kirrane S, Neumaier S, Polleres A, Navigli R. Knowledge graphs. arXiv preprint arXiv:2003.02320. 2020; Mar 4. [Consultado 2 agosto de 2022]. Disponible en: https://arxiv.org/abs/2003.02320.

Gomez-Perez JM, Pan JZ, Vetere G, Wu H. Enterprise knowledge graph: An introduction. InExploiting linked data and knowledge graphs in large organisations 2017 (pp. 1-14). Springer, Cham. [Consultado 20 julio de 2022]. Disponible en: https:/doi.org/10.1007/978-3-319-45654-6_1.

Sequeda J, Lassila O. Designing and building enterprise knowledge graphs. Synthesis Lectures on Data, Semantics, and Knowledge. 2021 Aug 3;11(1):1-65. [Consultado 3 agosto de 2022]. Disponible en: https://doi.org/10.2200/S01105ED1V01Y202105DSK020.

Cárdenas ML, Fernández TD, Fernández MD, de la Iglesia Campos M. GRAFOS VIRTUALES DE CONOCIMIENTO PARA LA INTEGRACIÓN DE DATOS EMPRESARIALES EN UNA EMPRESA CUBANA. Revista Cubana de Administración Pública y Empresarial. 2022 Apr 20;6(1):e211. [Consultado 14 julio de 2022]. Disponible en: https://doi.org/10.5281/zenodo.6472957.

Xiao G, Ding L, Cogrel B, Calvanese D. Virtual knowledge graphs: An overview of systems and use cases. Data Intelligence. 2019 Jun 1;1(3):201-23. [Consultado 2 agosto de 2022]. Disponible en: https://doi.org/10.1162/dint_a_00011

Published

2022-11-19

How to Cite

Delgado Fernández, T. . (2022). Data ecosystems reference architecture based on data mesh & data fabric. Cuban Journal of Public and Business Administration, 6(3), e249. https://doi.org/10.5281/zenodo.7294747